Human induced pluripotent stem cell-derived versus adult cardiomyocytes: an in silico electrophysiological study on effects of ionic current block

نویسندگان

  • M Paci
  • J Hyttinen
  • B Rodriguez
  • S Severi
چکیده

BACKGROUND AND PURPOSE Two new technologies are likely to revolutionize cardiac safety and drug development: in vitro experiments on human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and in silico human adult ventricular cardiomyocyte (hAdultV-CM) models. Their combination was recently proposed as a potential replacement for the present hERG-based QT study for pharmacological safety assessments. Here, we systematically compared in silico the effects of selective ionic current block on hiPSC-CM and hAdultV-CM action potentials (APs), to identify similarities/differences and to illustrate the potential of computational models as supportive tools for evaluating new in vitro technologies. EXPERIMENTAL APPROACH In silico AP models of ventricular-like and atrial-like hiPSC-CMs and hAdultV-CM were used to simulate the main effects of four degrees of block of the main cardiac transmembrane currents. KEY RESULTS Qualitatively, hiPSC-CM and hAdultV-CM APs showed similar responses to current block, consistent with results from experiments. However, quantitatively, hiPSC-CMs were more sensitive to block of (i) L-type Ca(2+) currents due to the overexpression of the Na(+) /Ca(2+) exchanger (leading to shorter APs) and (ii) the inward rectifier K(+) current due to reduced repolarization reserve (inducing diastolic potential depolarization and repolarization failure). CONCLUSIONS AND IMPLICATIONS In silico hiPSC-CMs and hAdultV-CMs exhibit a similar response to selective current blocks. However, overall hiPSC-CMs show greater sensitivity to block, which may facilitate in vitro identification of drug-induced effects. Extrapolation of drug effects from hiPSC-CM to hAdultV-CM and pro-arrhythmic risk assessment can be facilitated by in silico predictions using biophysically-based computational models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phenotypic variability in LQT3 human induced pluripotent stem cell-derived cardiomyocytes and their response to antiarrhythmic pharmacologic therapy: An in silico approach

BACKGROUND Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are in vitro models with the clear advantages of their human origin and suitability for human disease investigations. However, limitations include their incomplete characterization and variability reported in different cell lines and laboratories. OBJECTIVE The purpose of this study was to investigate in silico ...

متن کامل

A Quick update from the Past to Current Status of Human Pluripotent Stem Cell-derived Hepatocyte culture systems

Pluripotent stem cells (PSCs) may be offered as an unlimited cell source for the hepatocyte generation. The generation of hepatocytes from stem cells in vitro would provide an alternative cell source for applications in drug discovery and cell transplantation. In this review, we discuss different approaches to generate pluripotent stem cell-derived hepatocytes, advantages, limitations for each ...

متن کامل

High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents.

Human-induced pluripotent stem cells (hiPSCs) can differentiate into functional cardiomyocytes; however, the electrophysiological properties of hiPSC-derived cardiomyocytes have yet to be fully characterized. We performed detailed electrophysiological characterization of highly pure hiPSC-derived cardiomyocytes. Action potentials (APs) were recorded from spontaneously beating cardiomyocytes usi...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 172  شماره 

صفحات  -

تاریخ انتشار 2015